iNIGMA


Seminários Diagonais – Diapositivos
Junho 10, 2014, 8:33 pm
Filed under: Seminário Diagonal

Olá 🙂

Os diapositivos usados nos três últimos seminários já estão disponíveis:

José Pedro Quintanilha – Polinómios Simétricos e Polinómios W-harmónicos

André Macedo – Formas Quadráticas e Leis de Reciprocidade

Manuel Martins – Isomorfismos entre Anéis de Frações de Planos Quânticos

Anúncios


Seminários Diagonais – diapositivos
Maio 26, 2014, 9:12 pm
Filed under: Seminário Diagonal

Olá. 🙂

Quem estiver interessado pode rever os slides usados nos seminários da semana passada, usando os links abaixo:

Hélder Lima – Transformadas aritméticas relacionadas com a função zeta de Riemann

João Lourenço – Convergência de séries p-ádicas



Seminários Diagonais
Maio 24, 2014, 12:14 pm
Filed under: Seminário Diagonal

Olá 🙂

As apresentações dos bolseiros Novos Talentos da Gulbenkian vão prosseguir na próxima semana, como de costume à hora de almoço.

Quarta-feira: José Pedro Quintanilha – Polinómios Simétricos e Polinómios W-harmónicos

Quinta-feira: André Macedo – Formas Quadráticas e Leis de Reciprocidade

Seminários_diagonais_andre_ze

Cumprimentos iNIGMAticos 🙂

NOTA: Esta mensagem foi editada com ligações para os diapositivos usados nas palestras.



Seminários Diagonais
Maio 17, 2014, 11:21 am
Filed under: Seminário Diagonal 2013/2014

Olá

Vai começar um ciclo de Seminários Diagonais, com as apresentações dos bolseiros do Programa Novos Talentos da Gulbenkian. As palestras deverão ser acessíveis a estudantes de licenciatura, pelo que todos os alunos (em especial de matemática) e professores são convidados a aparecer. Como de costume, os seminários decorrerão às13h10, para evitar sobreposição com tempos lectivos, e todos são encorajados a trazer o seu almoço. 🙂
Na próxima semana, teremos já duas apresentações:

Quarta-feira: Hélder Lima – Transformadas aritméticas relacionadas com a função zeta de Riemann

Quinta-feira: João Lourenço – Convergência de séries p-ádicas (resumo alargado da palestra aqui)

Detalhes adicionais no cartaz dos eventos:

Seminários_diagonais_helder_joao

Cumprimentos iNIGMAticos 🙂

NOTA: Esta mensagem foi editada com ligações para os diapositivos usados nas palestras.



Seminários bolseiros Novos Talentos em Matemática
Julho 23, 2013, 1:53 pm
Filed under: Seminário Diagonal, Seminário Diagonal 2012/2013

Como habitual, realizou-se no final do ano um conjunto de Seminários Diagonais dados pelos bolseiros do programa Novos Talentos em Matemática no âmbito do seu trabalho na bolsa. Segue-se a lista dos seminários deste ano:

————-

24 de Abril – Miguel Amaral – 2º ano FCUP

Título: Cálculo numérico da dimensão fractal de uma série temporal

Resumo: Expor-se-á o conceito de dimensão fractal de uma curva, e métodos recentes para a calcular a partir de amostras de dimensão finita. Dar-se-ão exemplos de séries temporais, tais como o nível de água do Nilo, ou índices financeiros, que podem ser classificados segundo a sua dimensão fractal.

cartaz_dimensaofractal

———–

2 de Maio – João Santos – 2ºano FCUP

Título: Dinâmica de um Truque de Cartas

Resumo: A Alice distribui as cartas de baralho de 32 cartas, ciclicamente e em sequência, por três montes, de modo a estes ficarem com 11, 11 e 10 cartas, respetivamente, e com as faces ilustradas pelos naipes voltadas para cima. Entretanto, o Bruno escolhe em segredo uma das cartas e, no fim da repartição delas pelos três montes, diz à Alice em que monte está a carta por ele escolhida. Após receber esta informação, a Alice reúne os três montes, ficando estes agora com as faces voltadas para baixo. Após repetir este procedimento quatro vezes, a Alice consegue descobrir no meio do baralho qual foi a carta escolhida pelo Bruno. Como o conseguiu saber? Explicaremos por que funciona este truque através do estudo de um sistema dinâmico que descreve o movimento e a posição da carta escolhida.

cartaz_dinamica_truque_cartas

———–

21 de Maio – Manuel Martins – 2º ano FCUP

Título: Composição Iterada de Transformadas de Laplace

Resumo: A transformada de Laplace é das mais conhecidas em Análise, com fortes aplicações em equações diferenciais e na Física e em Engenharia. É um caso de operador integral do tipo convolução, tal como a convolução de Mellin. As transformadas de tipo convolução de Mellin abrangem vários operadores integrais conhecidos mas incluem novos casos por investigar, usando a fórmula geral do seu núcleo como a função especial de tipo hipergeométrico. O objectivo é considerar um caso especial, nomeadamente a composição sucessiva de transformadas de Laplace. É possível obter uma fórmula geral para esta classe e estabelecer condições da existência e invertibilidade destas iterações. Como um exemplo particular notável, tem-se a clássica transformada de Stieltjes e a sua inversa numa certa classe de funções, onde cada operador integral está bem definido.

(download dos slides aqui)

cartaz_transformada_laplace

———–

23 de Maio – José Fonseca – 2º ano FEUP

Título: Métodos Probabilísticos na Análise de Conjuntos Aditivos

Resumo: Nesta apresentação, tentarei utilizar conceitos probabilísticos simples para provar uma relação que estima a quantidade de divisores primos de um dado número contidos num conjunto aditivo de uma determinada extensão, relação essa estudada por Ramanujan e Hardy. Será uma demonstração baseada no método do matemático Pál Turán.

cartaz_conjuntos_aditivos

———–

28 de Maio – João Lourenço – 1º ano FCUP

Título: Representações de álgebras não comutativas

Resumo: Uma representação de uma estrutura algébrica permite-nos ver cada elemento dessa estrutura como uma transformação linear de um dado espaço vectorial. Desse modo, certas propriedades da estrutura original passam a poder ser estudadas utilizando ferramentas da Álgebra Linear. Neste caso concreto, iremos tratar das representações irredutíveis de duas famílias de álgebras, entre elas a álgebra de Weyl e o plano quântico. Iremos também mostrar a relação entre essas representações e as soluções de certos tipos particulares de equações matriciais.

cartaz_algebras_nao_comutativas

———–

30 de Maio – Sílvia Cavadas – 3º ano FCUP

Título: Sobre a noção de número real  – um devaneio (meta)matemático

Resumo: Tal como o homem se interroga sobre qual o sentido da vida, o matemático interroga-se sobre o significado dos números e dos objectos matemáticos em geral. Nesta palestra tentarei partilhar algumas das minhas reflexões sobre a resposta a esta questão, usando como fio condutor e exemplo ilustrativo considerações sobre a natureza, desenvolvimento e propriedades dos números reais.

(download dos slides aqui)

cartaz_numeros_reais



Seminário Diagonal “A previsibilidade dos mercados financeiros que não nos faz enriquecer” por Sílvio Gama
Março 20, 2013, 9:13 pm
Filed under: Seminário Diagonal, Seminário Diagonal 2012/2013

Realizou-se hoje o seminário diagonal “A previsibilidade dos mercados financeiros que não nos faz enriquecer” por Sílvio Gama. Podes fazer o download dos slides (gentilmente cedidos pelo professor Gama) aqui.

Título:  A previsibilidade dos mercados financeiros que não nos faz enriquecer

Resumo: O objectivo deste seminário é desenvolver algumas ideias sobre a evolução dos preços dos mercados financeiros.  Cada mercado tem espécie de “temperatura”: o expoente de Hurst, H. O expoente H está compreendido entre 0 e 1. O valor H = 0.5 assinala a presença de movimento Browniano. Se 0.5 < H < 1.0, está-se perante o efeito de Noé (manutenção da tendência). Se 0 < H < 0.5, está-se perante o efeito de José (inversão da tendência).

cartaz_mercados_financeiros



Seminário Diagonal “Cancelamento em fracções” por Maria Carvalho
Março 2, 2013, 11:30 pm
Filed under: Seminário Diagonal, Seminário Diagonal 2012/2013

Realiza-se na próxima quarta-feira, dia 6 de Março, o seminário diagonal “Cancelamento em fracções” por Maria Carvalho. É à hora do costume (13h10) no anfiteatro 031 do departamento de matemática. Desta feita, um tema lúdico; já alguma vez tinhas pensado nesta questão?

Título: Cancelamento em fracções

Resumo: Se riscarmos o dígito 6 comum ao numerador e ao denominador da fracção 64/16, obtemos 4/1, e de facto 64/16=4. Analogamente, 98/49=2 e 65/26=5/2.  Contudo, este é, em geral, um procedimento incorrecto (por exemplo, 25/52 não é igual a 1). Para que fracções é válido?

cartaz_cancelamento_em_fraccoes